
Macintosh Technical Notes

New Technical Notes

Developer Support

®Macintosh

TextEdit Q&As
Text M.TX.TextEdit.Q&As

Revised by: Developer Support Center October 1992
Written by: Developer Support Center October 1990

This Technical Note contains a collection of Q&As relating to a specific topic—questions
you’ve sent the Developer Support Center (DSC) along with answers from the DSC
engineers. While DSC engineers have checked the Q&A content for accuracy, the Q&A
Technical Notes don’t have the editing and organization of other Technical Notes. The Q&A
function is to get new technical information and updates to you quickly, saving the polish for
when the information migrates into reference manuals.

Q&As are now included with Technical Notes to make access to technical updates easier for
you. If you have comments or suggestions about Q&A content or distribution, please let us
know by sending an AppleLink to DEVFEEDBACK. Apple Partners may send technical
questions about Q&A content to DEVSUPPORT for resolution.

New Q&As and Q&As revised this month are marked with a bar in the side margin.

Resizing a Macintosh edit field for TEPaste
Written: 11/27/91
Last reviewed: 11/27/91

I have a small edit field and when I call TEPaste, the edit field contents scroll up. How can I
calculate what the height of the edit field would be after the paste, resize the edit field to be
that size, and then do the paste?

There are a couple of ways to implement this:

Method #1:
1. Set the clip region to something other than the viewRect of the edit field.
2. Call TEPaste or TEStylPaste to insert the clipboard text.
3. Call TEGetHeight to get the new height of the text.
4. Set the viewRect of the TERec to the new height. Call TECalText for good measure (and
good lineStarts).
5. Finally, set the clip region back to normal and call TEUpdate.
Developer Support Center October 1992

Macintosh Technical Notes

Method#2:
1. Call TENew or TEStylNew to allocate a brand spankin’ new temporary TERec, and give it
a viewRect and destRect that’s off the screen but that has the same width as the original
TERec.
2. Next, copy the hText handle of the window’s TERec into the hText field of the temporary
TERec (Good job for BlockMove [IM II-44]).

Developer Support Center October 1992

Macintosh Technical Notes

3. Call TECalText and TEActivate on it; then paste the clipboard text into the temporary
TERec. Since the view and dest Rects are off the screen, none of this will be seen by the
user.
4. Call TEGetHeight to get the new height, then copy the text back into the original TERec.
5. Finally, call TECalText, then TEUpdate and TEActivate on the original TERec.

Method #1 has less overhead and is a little easier to implement. However, if you have any
custom hooks installed in your TERec, then you probably want to let TextEdit do as much of
the work as possible. In this case, method #2 is a better way.

Saving and restoring styled Macintosh TextEdit records
Written: 11/26/90
Last reviewed: 12/19/90

How do I save and restore Macintosh records created with TextEdit that contain styles?
Where can I find additional information or sample code?

There’s no standard for saving text with styles created by TextEdit, so all we can offer is a
recommendation that’s modeled after the way that TECopy works on styled text. In styled
TextEdit, the style information is stored separately from the text rather than embedded
within it. TECopy maintains this separation when styled text is copied, so our
recommendation maintains this separation, too.

To save the text part, you could make a file of type TEXT and save the text in the data fork
of the file, like TeachText does. You could also save it in a resource of type TEXT.

The best way to save the style information is to use the StScrpRec record. Other records
used by styled TextEdit contain references to other structures or they contain only a part of
the style information, and that makes saving them awkward. The StScrpRec doesn’t contain
references to any other structures, and it contains enough information to rebuild the entire
tree of TextEdit structures. When you call TECopy on styled text, both a 'TEXT' and 'styl'
scrap type is placed into the desk scrap. The 'TEXT' type just contains the text. The 'styl'
type contains a StScrpRec containing all of the style information for the copied text.
TextEdit doesn’t maintain a StScrpRec for the entire text buffer, so you have to tell TextEdit
to do this for you when you’re ready to save the style information.

Fortunately, one call does it all. Inside Macintosh, Volume V, page 268, documents the
GetStylScrap routine. It creates a new StScrpRec record, places all the style information of
the selected text into it, and returns a handle to this StScrpRec. First, select the text you want
to save either by calling TESetSelect or by setting the selStart and selEnd fields of the
TextEdit record if you don’t want the selection to be visible to the user. (If you do this,
remember to restore the old values of selStart and selEnd after you get the StScrpHandle.)
Next, call GetStylScrap to construct the StScrpRec. You can now save the resulting

Developer Support Center October 1992

Macintosh Technical Notes

StScrpRec, perhaps in a resource of type 'styl' or in whatever way you see fit.

Reading the text and styles back into a TextEdit record isn’t much more complicated. First,
read the text back into a buffer and read the 'styl' resource (or however you saved it) into a
StScrpRec. Create a styled TextEdit record (or use an old one), then call TEStylInsert,
passing it a pointer to the text buffer and a handle to the StScrpRec. Your TextEdit record
should then contain and display your original styled text. That’s all!

Macintosh SetClikLoop procedure and TERec clikLoop field
Written: 7/30/91

Developer Support Center October 1992

Macintosh Technical Notes

Last reviewed: 8/1/91

I have had some problems with the SetClikLoop procedure which don’t appear when I set
the clikLoop field directly (in C). Why does TextEdit’s SetClikLoop procedure create a
special procedure to call my clikLoop routine, rather that just installing the clikLoop
directly? Inside Macintosh says you can set the clikLoop field directly in assembly. Why not
in C?

The short answer is that the special procedure is a glue routine for shuttling a result between
the stack and the register D0. The larger question is why does installing clikLoop directly
work? C, I think, is the culprit.

But, before I get ahead of myself, let me explain the SetClikLoop procedure. As you know,
the click loop routine has no parameters but it does return a Boolean result (IM I-380).

FUNCTION MyClikLoop : Boolean; { Pascal declaration }
pascal Boolean MyClikLoop(); { C declaration }

Now, MyClikLoop is called by the TextEdit Manager from inside the TEClick routine. The way the code was written, TEClick expects to get the
Boolean result from D0. For assembly programmers, this is no problem. In Pascal, the return value is placed on the stack. So, D0 does not
contain your routines’ Boolean and what TEClick grabs will be “who knows what” and your program should crash. SetClikLoop will install a
glue routine which calls MyClikLoop. The glue routine will move the result from the stack to D0. By the way, this information is documented
on pages 237-238 of Volume Two of Macintosh Revealed, Second Edition, by Stephen Chernicoff.

Now why is your program causing problems when you use SetClikLoop? You might have declared your MyClikLoop as a C function. Since
MyClikLoop takes no parameters, nothing is put on the stack. But C, unlike Pascal, places its return value in D0. So, for C, the glue routine is
not needed. On the other hand, if you use the SetClikLoop routine with a C routine, you will take the top two bytes off the stack and clobber D0
with the wrong answer. Thus, you might get problems.

Though the C routine may work by setting it directly to the clikLoop field, doing it that way is not the supported method. You should declare
your MyClikLoop function as a Pascal function and use SetClikLoop.

Special handling for Control-P keyboard input in a Mac dialog
Written: 6/5/91
Last reviewed: 8/1/91

Under System 6, when Control-P is pressed, a DLE character (hex 10) appears in a
Macintosh dialog’s editText field. Under System 7, pressing Control-P produces no change
in the editText box. The character is fed in via a normal (unaltered) keyDown event fed to
DialogSelect. Does Control-P have some special meaning to DialogSelect or TextEdit now?

Believe it or not, and it took several of us scratching our heads to figure this out; yes, it does,
and this is by design! What you are running into is the Dialog Manager and TextEdit
working together to make Cut, Copy, and Paste function keys work on an extended
keyboard. The function keys on the top of an extended keyboard return $10 as their ASCII
keycode. Thus, when TEKey detects that it is being called from dialog select, and the key
you pass is a $10, it

Developer Support Center October 1992

Macintosh Technical Notes

then looks for the event record on the stack and gets the raw keycode to determine which
edit operation to perform. The bottom line is that it will not then enter the $10 in the edit
field.

There is a simple workaround, and that is to install a filter proc in your dialog that detects
keystrokes (actually it could always just look for this certain keystroke) and passes them to
TEKey itself, thus skirting the whole issue.

Dimming and disabling a specific TEditText object
Written: 8/8/91
Last reviewed: 8/13/91

How can I dim and disable a specific TEditText object in my TDialogView so the field is not
editable?

The trick is to use the TView methods Dimstate and ViewEnable to disable and dim the
TEditText Views, and then do a TEditText.StopEdit (which disables editing in the TEditText
box), and in the other case enable dimming and the view itself and use the
TEditText.StartEdit (which enables editing in the TEditText box), as shown in the C++
example below:

 anEditText2->DimState(TRUE,kDontRedraw); // disable
 anEditText2->ViewEnable(FALSE,kRedraw);
 anEditText2->StopEdit();

 anEditText1->DimState(FALSE,kDontRedraw); // enable
 anEditText1->ViewEnable(TRUE,kRedraw);
 anEditText1->StartEdit(TRUE,fTEView);

MacApp sample code using this technique is included with DTS’s Snippets files.

Get TEHandle from DialogPeek, not GetDItem
Written: 1/17/92
Last reviewed: 2/17/92

I want to show all characters in my Macintosh control panel as bullets where the password is
typed in. I cannot get the TECustomHook to work properly, it crashes before it gets to my
hook routine. In the following Think C example, CPtr is dereferenced from the handle used
in the control panel’s cdevValue field:

 GetDItem(DPtr, ADMINPWTE+NumItems, &theType, &theItem, &theRect);
 CPtr->myTEProc = (ProcPtr)TEPWHook;
 TECustomHook(intDrawHook, &CPtr->myTEProc, theItem);

GetDItem does NOT return a TEHandle; it returns a handle to the current text of the edit item. You must get TEHandle from DialogPeek and
must always monitor and change the TECustomHook on the fly. There is only one TEHandle for a dialog, no matter how many edit items are
associated with the dialog. See the description of the DialogRecord data type in Inside Macintosh.

Developer Support Center October 1992

Macintosh Technical Notes

Cursor flicker while using Macintosh TextEdit
Written: 5/6/92

Developer Support Center October 1992

Macintosh Technical Notes

Last reviewed: 9/15/92

The cursor flashes when the user types in TextEdit fields in my Macintosh application. This
is done in TEKey. I notice that most programs hide the cursor once a key is pressed. I don’t
care for this because then I have to move the mouse to see where I am. Is this a typical fix
for this problem and an accepted practice?

There’s very little you can do to avoid this. The problem is that every time you draw
anything to the screen, if the cursor’s position intersects the rectangle of the drawing being
done, QuickDraw hides the cursor while it does the drawing, and then shows it again to keep
it from affecting the image being drawn beneath it. Every time you enter a character in
TextEdit, the nearby characters are redrawn. Usually this is invisible because the characters
just line up on top of their old images, but if the cursor is nearby and visible, it will flicker
while it’s hidden to draw the text. This is why virtually all programs call ObscureCursor
when the user types. Also, most users don’t want the image of the cursor obscuring text they
might be referring to, yet they don’t want to have to move it away and then move it back to
make selections. Because it’s so commonplace, hiding the cursor probably won’t bother your
users; in fact, they might very well prefer the cursor hidden. This, combined with the fact
that there’s very little you can do to help the flickering, suggests that you should obscure the
cursor while the user types.

Developer Support Center October 1992

